Thermally activated electron transport in single redox molecules.

نویسندگان

  • Xiulan Li
  • Joshua Hihath
  • Fang Chen
  • Takuya Masuda
  • Ling Zang
  • Nongjian Tao
چکیده

We have studied electron transport through single redox molecules, perylene tetracarboxylic diimides, covalently bound to two gold electrodes via different linker groups, as a function of electrochemical gate voltage and temperature in different solvents. The conductance of these molecules is sensitive to the linker groups because of different electronic coupling strengths between the molecules and electrodes. The current through each of the molecules can be controlled reversibly over 2-3 orders of magnitude with the gate and reaches a peak near the redox potential of the molecules. The similarity in the gate effect of these molecules indicates that they share the same transport mechanism. The temperature dependence measurement indicates that the electron transport is a thermally activated process. Both the gate effect and temperature dependence can be qualitatively described by a two-step sequential electron-transfer process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electron transport and redox reactions in molecular electronic junctions.

Electron transport through single molecules or collections of molecules oriented in parallel can occur by several mechanisms, including coherent tunneling, activated transfer between potential wells, various "hopping" modes, etc. Given suitable energy levels and sufficiently long charge transport times, reduction or oxidation with accompanying nuclear reorganization can occur to generate "polar...

متن کامل

Thermally activated long range electron transport in living biofilms.

Microbial biofilms grown utilizing electrodes as metabolic electron acceptors or donors are a new class of biomaterials with distinct electronic properties. Here we report that electron transport through living electrode-grown Geobacter sulfurreducens biofilms is a thermally activated process with incoherent redox conductivity. The temperature dependency of this process is consistent with elect...

متن کامل

Electron Transport and Redox Reactions in Solid-State Molecular Electronic Devices

A core concept in electrochemistry is activated electron transfer (ET) between an electrode, usually a conducting solid, and a redox system in the nearby solution. The vast literature on ET kinetics describes the importance of ET to chemical and biological processes, and the underlying phenomenon of coupling a chemical reaction to the flow of current is the basis of >$300 billion of annual gros...

متن کامل

Coupling coherence distinguishes structure sensitivity in protein electron transfer.

Quantum mechanical analysis of electron tunneling in nine thermally fluctuating cytochrome b562 derivatives reveals two distinct protein-mediated coupling limits. A structure-insensitive regime arises for redox partners coupled through dynamically averaged multiple-coupling pathways (in seven of the nine derivatives) where heme-edge coupling leads to the multiple-pathway regime. A structure-dep...

متن کامل

Redox activity distinguishes solid-state electron transport from solution-based electron transfer in a natural and artificial protein: cytochrome C and hemin-doped human serum albumin.

Integrating proteins in molecular electronic devices requires control over their solid-state electronic transport behavior. Unlike "traditional" electron transfer (ET) measurements of proteins that involve liquid environments and a redox cycle, no redox cofactor is needed for solid-state electron transport (ETp) across the protein. Here we show the fundamental difference between these two appro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 129 37  شماره 

صفحات  -

تاریخ انتشار 2007